

UNIVERSIDADE FEDERAL DE MINAS GERAIS DEPARTAMENTO DE ENGENHARIA NUCLEAR

Av. Antônio Carlos, 6627, Pampulha, Escola de Engenharia, Bloco 4. 3409-6662 – secnucl@nuclear.ufmg.br

Título: FUDAMENTOS DE CIÊNCIAS DOS MATERIAIS			Código: ENU011		
Tipo: Disciplina					
Ofertante: Departamento de Engenharia Nuclear			Unidade: Escola de Engenharia		
Carga Horária Total: 30 h	Presencial teórica: 30 h		Presencial prática: 00 h	Créditos: 02	
Modalidade Educacional: Presencial		Int	Integraliza extensão? NÃO		
Período: a partir do 5º período completo				Classificação: OB	
Forma de acesso: Matrícula prévia			Existência de Exame Especial: SIM		

Pré-requisitos:

N	<u>آم</u> م	1	٦á
ľ	lao	1	ıa.

Conhecimentos prévios necessários:

É aconselhável que o discente tenha cursado MAT001 Cálculo Diferencial e Integral I e QUI003 Química Geral B. O aluno interessado em cursar Fundamentos de Ciências dos Materiais deve possuir conhecimentos básicos em cálculo diferencial e química inorgânica.

Ementa:

Fundamentos das ciências e engenharia de materiais: Materiais metálicos, cerâmicos, poliméricos, compósitos e suas aplicações; Estrutura Atômica e Ligação Interatômicas: A Estrutura dos Átomos, Ligação Atômica nos Sólidos, Coordenação Atômica. A Estrutura dos Sólidos Cristalinos: Estruturas Cristalinas, Direções e Planos Cristalográficos, Materiais Cristalinos e Não Cristalinos (Amorfos), Fases cristalinas e amorfas. Diagrama de Fases: Definições e Conceitos básicos, Diagrama de Fases Binários, O Sistema Ferro Carbono. Difusão: Introdução, Mecanismos de Difusão, Primeira e Segunda Lei de Fick, Aplicação da Lei de Fick à teoria de reatores nucleares. Estrutura e Processamento de Materiais Metálicos: Deformação Elástica, Deformação Plástica, Discordâncias e Deformação Plástica, Mecanismos de Aumento da Resistência em Metais. Materiais Orgânicos e suas Propriedades: Mecanismos de Polimerização, Estrutura dos Polímeros, Deformação dos Polímeros, Comportamento dos Polímeros; Cerâmicos Cristalinos e Vítreos, Classificação dos materiais cerâmicos, Estrutura e tipos de vidros silicatos. Processos de fabricação de materiais cerâmicos cristalinos. Aplicações dos Metais e Cerâmicos na Engenharia Nuclear.

Programa:

Tópicos	Conteúdo Programático
1	Introdução à Ciência dos Materiais
2	Propriedades físicas e natureza dos materiais
3	Estrutura Atômica e Ligação Interatômicas:
4	A Estrutura dos Sólidos Cristalinos
5	Direções e Planos Cristalográficos
6	Diagrama de Fases
7	O Sistema Ferro Carbono, Estrutura e Processamento de Materiais Metálicos
8	Avaliação 1
9	Difusão, Introdução e Mecanismos de Difusão
10	Materiais Orgânicos e suas Propriedades
11	Comportamento dos Polímeros
12	Fases Cerâmicas, Estrutura Cristalina das Fases Cerâmicas
13	Aplicações dos Metais e Cerâmicos na Engenharia Nuclear
14	Avaliação 2
15	Seminário

Critérios de Avaliação:

A critério do professor, desde que respeitado o §4º do Art. 65 do Regimento Geral da UFMG, que determina que nenhuma avaliação parcial do aproveitamento poderá ter valor superior a 40 pontos.

Serão realizadas duas avaliações de 35 pontos ao longo do semestre, somando 70 pontos, apresentação de seminário, avaliado em 20 pontos, e a lista de exercícios, 10 pontos.

Bibliografia:

Básica:

1. CALLISTER JR; William D.; RETHWISCH, David G. Ciência e engenharia de materiais: uma introdução.

UNIVERSIDADE FEDERAL DE MINAS GERAIS DEPARTAMENTO DE ENGENHARIA NUCLEAR

Av. Antônio Carlos, 6627, Pampulha, Escola de Engenharia, Bloco 4. 3409-6662 – secnucl@nuclear.ufmg.br

Tradução de Sérgio Murilo Stamile Soares. 9. ed. Rio de Janeiro: LTC, 2016.

- VAN VLACK, Lawrence Hall. Princípios de ciência e tecnologia dos materiais. Rio de Janeiro: Unidade , 2003
- 3. PADILHA, Angelo Fernandes. Materiais de engenharia. São Paulo: Hemus, 2007.

Complementar:

- 1. SHACKELFORD, J. F. **Introdução da ciência dos materiais para engenheiros.** 6. ed. São Paulo: Pearson Prentice Hall, 2008.
- 2. ASKELAND, Donald R.; PRADEEP, P. Fulay. Essential of Materials Science and Engineering, Cengage Learning, 2009.

APROVADO pela Assembleia Departamental em: XX/XX/2022

Name: FUNDAMENTALS OF MATERIAL SCIENCES Code: ENU011

Program:

Fundamentals of materials science and engineering: Metallic, ceramic, polymeric, composite materials and their applications; Atomic Structure and Interatomic Bonding: The Structure of Atoms, Atomic Bonding in Solids, Atomic Coordination. The Structure of Crystalline Solids: Crystalline Structures, Lattice Position, Directions and Planes, Crystalline and Non-Crystalline (Amorphous) Materials, Crystalline and Amorphous Phases. Phase Diagrams: Definitions and Basic Concepts, Binary Phase Diagram, The Iron Carbon System. Diffusion: Introduction, Mechanisms of Diffusion, Fick's First and Second Law, Application of Fick's Law to the Theory of Nuclear Reactors. Processing the Structural Materials of Metals: Elastic Deformation, Plastic Deformation, Disagreements and Plastic Deformation, Mechanisms for Increasing Resistance in Metals. Organic Materials and their Properties: Polymerization, Structural Features of Polymers, Deformation of Polymers, Composites; Ceramics and Glasses, Properties of Ceramics, Ceramics - Crystalline Materials, Processing and Applications of Ceramics and Glasses. Applications of Metals and Ceramics in Nuclear Engineering.